
* Fermi National Accelerator Laboratory 

FERMILAB-Pub-88/35-T 

February 1988 

THE COLOR STRUCTURE OF GLUON EMISSION 

Michelangelo MANGANO 

Fermi National Accelerator Laboratory 

P.O. Boz 500, Batavia, IL 60510. 

Abstract 

The color structure of an arbitrary QCD diagram is studied. A basis for the color 
form factors of a generic amplitude is suggested, in which all the coherence effects are 
automatically and simply accounted for to the leading order in N,. Some applications of 
this formalism are given for tree level amplitudes describing processes with one or two 
pairs of fermions and radiation of gluons and photons. The different coherence properties 
of the abelian and non-abelian radiation are exhibited with some analytic and explicit 
examples, leading to the appearance of string-effect-like correlations for hard non-abelian 
radiation. 

e Operated by Universities Research Association Inc. under contract with the United Slates Department of Energy 



1 Introduction 

Processes with many hard partons in the final state play a key role in high energy collisions. 

They allow for tests of perturbative QCD and they provide large backgrounds for more exotic 

phenomena [l]. The capability of performing precise predictions for these processes is severely 

limited by the complexity of the calculations involved: the large number of Feynman diagrams 

contributing to the amplitudes and the complex algebraic structure of the vertices call for ad- 

hoc techniques to treat the problem [2-IO). In particular, the organization of the helicity and 

the color structure of the amplitudes turns out to be fundamental. 

Recently a criterion was proposed to organize the color structure of amplitudes with many 

gluons [6,7] and with gluons and a quark-antiquark pair [5,9]. In this paper I describe a 

general way to efficiently organize the color structure of a generic QCD amplitude, containing 

an arbitrary number of quarks and gluons plus possibly arbitrary color singlet sources. As a by- 

product I will get exact expressions for some sets of partonic amplitudes relevant in hadronic 

collisions, e+e- interactions and deep inelastic scattering. These expressions will explicitly 

exhibit interesting phenomena of color coherence, generalizing results known in the case of soft 

radiation. 

This paper is organized as follows. In Section 2 I describe the construction of the color 

structures in which to expand an arbitrary QCD amplitude. I will first treat the tree-level 

case and then the case with loops, proving in an algebraical way the gauge invariance of the 

decomposition in terms of color-form-factors. In Section 3 I apply these results to the case of 

quark-gluon scattering, using a set of exact h&city-amplitudes to exhibit the properties of color 

coherence of the non-abelian radiation in relation to the case of abelian radiation. A non-trivial 

example of antenna-type patterns of emission for non-abelian radiation is given in Section 4, 

where processes with gluons and two quark pairs are described. Once again the relation with 

the emission of photons is established. As an example of the versatility of the technique, in 

Section 5 I will extend these results to processes with color-singlet sources, as e+e- scattering 

and Deep Inelastic Scattering (DIS). Throughout the paper all the particle’s momenta are taken 

as outgoing. This fact must be taken into account when using the given amplitudes in physical 

processes. 

2 The Color Form Factors 

In this Section I explicitly construct a set of color-form-factors which can be used to decompose 

any QCD amplitude in a gauge-invariant manner. The construction is very much in the spirit 

of ‘t Hooft’s l/N expansion [ll]. 



To start with, let me consider the color structure of an amplitude with quarks only, at tree 

level. I will take all the particles as outgoing, and will assign indices il,. . . , i, to the quarks 

and indices ji, . . . , j, to the antiquarks. It is understood that the quark ib is continuously 

connected through a fermionic line to the antiquark j,, for each 1 < k 5 m. Helicity will be 

conserved along this quark line, as well as flavor. We can furthermore assume all quarks to be 

different, the case with identical quarks being similar but more confusing. It is easy to verify 

that the color functions accompanying each diagram contributing to this scattering process can 

be decomposed in terms of the following color structures: 

where {a} = (ai,. . , a,,,) is a permutation of (ji,. . . , j,) and p is the number of antiquark 

indices that are kept fixed in the permutation. In other words, Q is the number of &,;, appearing 

in the product, with the caveat that when ailof the delta functions connect quarks that belong 

to the same fermionic line then p = n - 1. Each color structure D({a}) defines the color flow 

pattern inside the diagram. Whenever the color flows continuously along a quark line, from 

the beginning to the end, this configuration is suppressed by a factor N-‘. In figure 1 the case 

m = 2 is shown, with the possible color factors given by: 

P.2) 

These two color factors arise from the following decomposition of the color function multiplying 

the diagram: 
Nl-1 

aG (xa)i~j~(~o)i~j~ = &,j2&,j* - $6irjL6i2j2r 

where I have chosen the following normalization of the X matrices: 

(2.3) 

[X”,Xb] = ivQ”% , tr(X”P) = P. (2.4) 

If the gauge group were U(N) instead of SU(N) only the first color structure in Figure 1 would 

appear. The second structure corresponds to the subtraction of the trace of the U(N) gauge 

field. I will call this trace the ‘U(N)-photon’. In Figure 1 the propagation of the U(N)-photon 

is represented by the slim closed ellipse between the two quark lines, and one can interpret 

the negative power of N appearing in equation (2.1) as being the number of U(N)-photons 

propagating in the color-flow pattern determined by D({a}). 

Given a h&city configuration for the external states the matrix element for m quark-pair 

scattering can then be expressed as: 
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(2.5) 



where the sum is over the permutations of (jl,. . . , j,) and &,)(p, h) are m! functions of the 

2m momenta and h&cities. We will call these functions sub-amplitudes. TO the leading order 

in N only the terms in the sum with OLD # j, will contribute, and the sum over colors of the 

amplitude squared will be the sum of the squares of the functions A{,), the interferences being 

suppressed by negative powers of N: 

2 lAmI = N”; I-&&h)12. (2.6) 
P 

The hat on the sum sign constrains the sum to extend over permutations (al,. . . , CY,,,) with 

c-q # j, for all k’s. 

This construction admits a straightforward generalization to the case when gluons are radi- 

ated. Suppose we have a process with m quark pairs and n gluons as external states. Then it 

is easy to check that the color structure of each Feynman diagram can be decomposed in terms 

of the following color functions, in all the possible permutations of the gluon color indices: 

&, (X1 . . . An’)j,~,(Xn’+l.. . An’)+, . . . (Ah-l+l.. . An)&,,-, (2.7) 

The power p is determined as before, and a product of zero X matrices has to be interpreted as 

a Kroneker delta. 

To give an example, in the case of two quark pairs and two gluons the possible color struc- 

tures are the following: 

(XaXb)iljt bj, , (~a)i*j~(xb)i~j~ t Jitjz(AaAb)i2jl, (2.8) 

+(A"Xb)i,jl 6igja 2 $(A")i,j,(Ab)i,j, 1 $&,j, (X'Xb)i,jy~ P-9) 

where a and b represent the color indices of the two gluons, and the six additional color structures 

with a and b interchanged have been omitted. A graphical representation of these color factors 

is given in Figure 2. As another example, in the case of one quark-pair and n gluons the color 

factors are the n! permutations of the following expression: 

(A”’ A”’ . . .Xn”)ij. (2.10) 

The structure of processes with only gluons was studied in detail in reference [6,7]. 

The color structure in equation (2.7) has B very simple physical interpretation. In fact 

it corresponds to the emission of the gluons off the color-flow lines defined by the functions 

D({a}). Each function D( {a}) d e fi nes a net of color flows, as shown in figure 1 for the case 

m = 2. Each of these color-flow lines, specified by a pair of indices (ih, jh,), acts as a sort 

of antenna, that radiates gluons with an associated color factor (X.. .X)i,j,, (see Figure 2). 

This color factor is the one appearing in the QED-type diagrams, i.e. diagrams in which all 
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the gauge bosons are emitted from the fermionic line and no three- or four-vector vertices are 

present. Equation (2.7) shows that even graphs with non-abelian vertices can be decomposed 

as sums of QED-like diagrams. The full amplitude is then given by: 

.L,m = C ACtnil, {al) &~4(p,h), (2.11) 

A({“~}, {a}) are the color factors appearing in equation (2.7): they depend upon the partition 

and permutation {ni} of the gluon indices and upon the antenna pattern determined by the 

permutation of indices {a}. If some of the external states are in a given color configuration, for 

example in a color singlet, the amplitude can be easily obtained by contracting equation (2.11) 

with the proper projector. Th e sub-amplitudes A(p,h) multiplying a given color factor are 

functions of the momenta and helicities of the external particles. These sub-amplitudes are 

obtained by summing contributions from various different Feynman diagrams. 

The color-form-factors given in equations (2.1) and (2.7) will also describe loop amplitudes, 

as can be seen by applying repeatedly to each diagram the Lie-Algebra identity f&Xc = 

-i/fi[,Jn, Xb] and the identity (2.3). In this case, though, for each partition {ni} and permuta- 

tion {a} there exist different possible powers of N multiplying the form-factor. This is because 

additional powers of N are introduced by the traces over the colors of the particles entering the 

loops. We can then introduce the following color structures: 

A’( (ni), {a)) = Nq (A’ . s. An’)i,ol (A”‘+l. s a A”‘)i2p, a.. (ZI~-I+~ . . . A”)inpr (2.12) 

Now the power 7 can be also a positive integer. The decomposition of each diagram in terms 

of these color structures can be performed studying the possible coior-flow patterns inside the 

given diagram. Every loop amplitude can then be uniquely written in the following form: 

A m.n = c c A’({~i),(O))~~~),~,)(P,h). 
q ~~M.-~ 

(2.13) 

The sum is over the integers Q giving rise to a non-&era contribution. 

Each sub-amplitude ipf..,i,j(p, h) is invariant under gauge transformations of the gluon 

polarizations et -+ CL + ppi. To prove this one does not need Ward identities, being su&ient 

the orthogonality, to the leading order in N, of the color factors. I will now prove this fact. 

Let 6.ipA,,,,,(p, h) be the gauge variation of a given sub-amplitude . Suppose q is the largest 

q for which some non-sero sub-amplitude exists, and let {+ii}) {&} be a given partition and a 

given permutation of quark and gluon indices. Then the following identity follows: 

0 = c $;,,i,j(~, h)6&,n = N2q+n+m ~@~,~,&p, h) + 0(1/N’). (2.14) 
cd 

This shows that all the sub-amplitudes labelled by Q are gauge-invariant, since gauge-invariance 

does not depend on N and variations of 0(1/Nr) cannot cancel the leading piece. One can 

5 



then proceed to the next non-trivial Q and repeat the analysis, continuing until all the values 

of Q have been considered. 

This gauge invariance is particularly useful for the calculation of the sub-amplitudes, since 

different gauges can be chosen for different sub-sets of gauge invariant diagrams’. This property 

was key in the calculation of the amplitudes for the six-parton processes carried out in [6,7]. 

From now on I will give results only for the tree-level case. As in the case of the amplitude 

with only quarks, to the leading order in N the sum over colors of the square of the amplitude 

with quarks and gluons is given by the sum of the squares of the sub-amplitudes : 

5 IA,,,l* = g2(“+m-‘)N”+” ,*ra, IkMdP~ hV. (2.15) 

Once again the ‘hat’ restricts the sum to the permutations {a} with ok # jk for all k’s. This 

remarkable property is unique to this color decomposition. Linear combinations of the color 

factors A, for example, would still give rise to gauge-invariant sub-amplitudes , but would 

not enjoy the property (2.15). Therefore we can think of the prescription described in this 

note as of a systematic and simple procedure to isolate the leading-N contribution to a given 

process. All of the coherence effects are exactly accounted for, to the leading order in N, by 

equation (2.15): color coherence, azimuthal correlations, interference between final-state and 

initial-state radiation, etc. In particular, no distinction is actually made between final- and 

initial-state radiation, both being treated on the same ground. 

3 Color Coherence in qg Scattering 

Color coherence effects were first observed in e+e- collisions [13], where the soft radiation emit- 

ted from a final state containing a hard 6-q pair and a hard gluon is suppressed in the region 

between the two quark-jets. This effect is known as the stting eflect, and has been described 

by the Lund string-model [14] and by Marchesini and Webber [15], in the context of Monte- 

Carlo simulations, and by the authors of reference [16] in the context of perturbative QCD. The 

possibility of observing color-coherence effects in hadronic collisions would be of fundamental 

importance, because it would provide a way to separate quark and gluon jets’ and would signifi- 

cantly reduce the background to important processes [18]. An analysis of color coherence effects 

in hadronic collisions was recently carried out in reference [19,20]. The actual detectability of 

these effects has still to be thoroughly investigated, but available results [21] seem to suggest 

‘After completing this work, the paper in rcfeerence [12] was brought to my attention. There the issue of 
finding .s gauge-invariant decomposition of a QCD amplitude in terms of color-form-factors WIU also analyzed. 
The choice of QED-type form-factors was discussed and recipies for the decomposition of higher loop diagrams 
were given. 

‘For a review of the properties of soft QCD radiation in jet physics see reference [17]. 
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that, at least at current energies, the phenomenon is washed out by the fluctuations. One 

important issue that will have to be answered in the future is if the coherence effects become 

strong enough with higher energies to overcome the smearing operated by the fluctuations. 

For processes with purely hadronic final states the preferred channel to look for color co- 

herence is ~g -+ qg plus gluons (q represents either a quark or an anti-quark). This process 

was studied in the case of single gluon emission in [19,20,21]. Using our formalism we can gain 

additional insight on the way the coherence effect arises and we can gain some analytic control 

on the multi-gluon emission case. 

Using results contained in [9] we can explicitly write the matrix elements of the most helicity 

violating (and non-vanishing) amplitudes, i.e. those with all but one of the gluons carrying the 

same helicity: 

&,n(hprhs) = ign’p~~~g’ il,~yn,(xo’ ~~.x”-)ii~pl)Ilz;, . . R ( p’j’ (3-l) 

Here the index g represents the gluon with helicity different from all the others; p and p’ are 

the momenta of the quarks, p representing the quark with the same helicity as g. The symbol 

{ij}, with i and j being the momenta of the external particles carrying the respective indices, 

satisfies? 
l(~j}l’ = (i + j)' = 2 i. j (3.2) 

The phase of {ij} depends upon the polarization of the gluon g. In the notation of reference [3]: 

(ij}h,=+ = tij) E G(Pi)( (ij}h,=- = [ij] s (ji)* (3.3) 

$(p) is a spinor satisfying the massless Dirac equation with momentum p: p. 7 $(p) = 0. For 

n = 2,3 the amplitude represented in equation (3.1) is the only independent amplitude necessary 

to completely describe the process. For n 2 4 there are contributions from different helicity 

configurations where at least two gluons have the same polarization for each polarization. The 

matrix elements for these helicity amplitudes will be very complicated but, in analogy with 

what shown by Maxwell [22] in the case of the Parke and Taylor formula [23] for amplitudes 

with gluons only, their overall contribution can be approximated quite well in most of the 

phase space once we know (3.1). I will then use the amplitude described by (3.1) to model the 

behaviour of the full amplitude, summed over all the helidty configurations. 

The first important observation to make is the following: if we put the color factors 

(A” . . Xa-)ij equal to 6ij for each permutation of 1 through n, then equation (3.1) gives rise 

to the QED result for the amplitude with one quark-pair and n photons. This can be easily 

‘Since I have taken alI the particles 85 outgoing, in case the energy components of the two momenta i and j 
had a different sign an extra minus sign should be introduced in the following relation. 

7 



proved diagrammatically by observing that diagrams with non-abelian gluon vertices entering 

the graph expansion for the sub-ampIitudes cancel in pairs when we perform the sum over per- 

mutations. In this way the only diagrams left are the QED-type diagrams, with the common 

color structure given by Sij. This result is independent of the helicity configuration, and for the 

helicities considered above we then obtain: 

AL(hq*hT) = jenbij 
b7wr~ 

{pp’} {& {pl){12;. . . (np’)’ (3.4) 

Now 7 is the momentum of the photon with helicity different from the others. The second 

observation is that the following remarkable identity holds: 

tP.4 
{l.g$) iPlH12). . * {WI 

= fi !pp’.’ 
i=l bHrti)’ 

Equation (3.5) can be proved by iteratively using the Fierz identity: 

bP’Hw’) = {PQ’HPP’I + {Pd{P’P’b 

(3.5) 

(3.6) 

Equation (3.5) can be thought of as a sort of ‘square root’ of the eikonal identity. It allows us 

to put equation (3.4) into the eikonalized form: 

Equations (3.1), (3.4) and (3.7) offer a nice example of the difference between the properties of 

the non-abelian radiation as opposed to the abelian radiation. Let us take, in fact, the square of 

these three expressions, summed over the colors of the quarks and of the gluons (when present): 

2 IAl,,(hq,hg)jz = IJ~T+~(~~~) 
{l,,,...,n) (pl)(12;. . . (up’) + &n’erf.)J3.g) 

C 

5 IAt,(h,, h,)l’ = e’“N(~~) C 
(p1)(12;. . . (@) + (interf.11 W-8 

W....,n) 

5 IA;,,(h,,h,)Ia = e2n,(*)3(p’7) fi (d) 
WI’ i=1 (pi)(‘#) ’ 

(3.10) 

Here (ij) = 2 i. j. Equations (3.9) and (3.10) are identical, thanks to the eikonai identity, 

but I wrote them in the two different ways to establish a connection with the expression for 

the gluon emission. Equation(3.10) h s ows that the photon emission is incoherent: the photons 

only know about their source, i.e. the quark line, but they do not know about each other. Up 

to the overah factor in front, the probability for the emission of ra photons is just the product 

of the probabilities for the independent emission of each of them. ’ 

‘Thin result, which is exact for this specific helicity configuration, also holds for any other helicity confignrce 
tion in the limit of soft-photon emission. The reason why it cannot hold for an arbitrary h&city configuration 
is that in general the amplitude witi have poles of the kind l/(p + k + k’)‘, k and k’ being arbitrary photon 
momenta. 

8 



On the contrary, if we now look at equation (3.8) we see that the gluon emission is not 

incoherent: gluons know of each other’s presence, and the full probability is not a product 

of probabilities. The interference terms coming from the product of different permutations 

are suppressed by a factor of l/Ns; this suppression originates from the interferences of the 

color factors. For the photon emission, vice versa, we can see from equation (3.9) that the 

interferences among different permutations are not suppressed and they conspire to cancel 

the coherence apparent into the sum of squares, giving rise to the factorized expression given 

in (3.10). The difference between equation (3.8) and equation (3.10) is the essence of the 

string-effect. 

4 qijq(r plus gluons 

In general the factorization of the color structure exhibited in equation (2.7) does not imply 

a similar factorization of the kinematical part of the amplitude. In other words, the sub- 

amplitude that multiplies a given color factor does not factorize into products of terms that 

only depend upon the kinematical variables (helicities and momenta) of the particles belonging 

to the same antenna. One remarkable non-trivial exception to this general feature is given by 

the amplitude for a process with two quark pairs and an arbitrary number of like-helicity gluons 

(all the particles are outgoing). Up to an overall factor that only depends upon the helicity 

configuration each sub-amplitude factorizes into the product of two terms only depending upon 

the momenta of the gluons emitted by one or the other of the two antennas: 

44, hw b) = ignfaAo(h,, h,, h,) . 

c {Pd {qz9 
{Pal}{a~a~}. . . {a&} {q~l}{~,~,}. . . (&,F)(~~’ ‘e’Xo’)ilh(Ab’ “’ Xbb’)i*A 

-- 
A (pa,){a~~~. . . (akgj) {qblj{*t$t.. (bb,q~(x”’ ‘. ’ xa’hd~ CAbI ’ ’ ’ Xbb’)izja * 

(4-l) 

This equation can be proved in the spirit of reference [9]: the helicity structure of the ampli- 

tude uniquely determines the pole structure and the residues of these poles, through unitarity. 

Equation(4.1) is the only Lorents invariant amplitude that gives rise to the right poles and 

the right residues. Alternatively, one can use recursive relations that were given recently [lo], 

connecting amplitudes with n + I gluons to amplitudes with n gluons. 

The symbols {ij} have the same meaning as before. The indices p and q (p and q) refer to 

the quarks (antiquarks) and the indices a =, be refer to the gluons. The arguments h represent 
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(bh,,h,) ao(h,,h,,h,) 

(+, +> +I 

LA II lPPl’~PPHq~) 1 

Table 1: The universal functions ao(h,,, h,, h,). The meaning of angle- and square-brakets is 
given in equation (3.3). 

the helicities of the two quarks and of the gluons; the helicities of the anti-quarks are fixed by 

helicity conservation along the fermion lines. The sum is over all the partitions of the n gluons 

(k+k’=n,k=O,l,..., n) and over the permutations of the gluon indices. When k = (0,n) 

the product of zero X matrices becomes a Kroneker delta and one of the two kinematical factors 

is equal to one. The overall factor A0 can be written as follows: 

Adh,, h,, 4,) = (p=$‘j;2;;‘~;,~2. 

The functions as are given in Table 1, where helicity configurations obtained by permuting the 

quark helicities have been omitted. The functions as are universal, in the sense that they only 

depend upon the spin-l/2 nature of the quarks. As we will see later, they also enter in processes 

like deep inelastic scattering or et e- annihilation. 

To the leading order in N, the amplitude squared summed over colors is furthermore given 

by: 

~14hmhwhs)12 = g2”+‘N”+21Ao(hp, hp, h,)l’ 
cd 

’ 
(PP) (qd 

(Pa,)(V,) “. (akq) (q&)(&b,) ... (bit@)’ (4.3) 

If the quarks are identical we must add the contribution from the crossed channel P tt q. 
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As in the case with one quark pair, we can here compare the properties of photon radiation 

with those of gluon radiation. A reasoning similar to the one used in the previous section allows 

us to write the amplitude for the emission of n like-helicity photons off two quark-pairs: 

A(&, h,, h,) = i gae”Adh,, h,, h,) 

c b?4 Ind 
~J~I}{~I~s} . {a&p} {qb,}{b,b,}. . . {bk,~)(6i~j~6~~j~ - +6G~6i2h). 

(4.4) 

Only the contribution from gluon exchange is shown. The effect of photon exchange between 

the two quark-pairs can be easily added. A repeated use of the Fierz identity, equation (3.6), 

leads then to the following form of equation (4.4): 

A(&, 4, h,) = i g*e”Ao(h,, h,, h,) . 

rIL ({$\] + {qyq) t i i 
)(6iijlJi2j~ - k&,jl&,j,). (4.5) 

This expression shows that photons are emitted independently. Once again we expect this 

result to hold for an arbitrary helicity configuration in the soft-photon limit. 

If we substitute the color factor in equation(4.5) with the Abelian one, Si,j,Si,j,, and if 

we put g=e, then we obtain the amplitude for the process e+e-p+p- photona, as given in 

reference [24]. 

An incisive study of soft gluon emission in qrj -+ qQ processes was recently given in refer- 

ence [25]. 

5 e+e- and DIS 

It is easy to derive expressions analogous to (4.1) and (4.3) for the process Iiqij ghma, where 

If is a lepton-antilepton pair (for example efe- or e-c). Again the gluons have all the same 

helicity: 

A’(hi,h,,h,) = ig” c AL(k,&,h,) c (x0’ ...x’*)ij jq1)~12; 
“=,,Z.W 

(nq,)t (5.1) 
{lJ.....4 . . . 

z IA’(h, h,, &)I’ = g’“N”+’ Iv~~wd4Mddla (5*2) 7, 1 
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q and q’ are the quark momenta and 1 through n are the gluon momenta. The contributions 

from photon,W and 2 exchange are explicitly exhibited. The functions A\(hl, hpr h,) are given 

by: 

Av(hl,h,, h,) = Qv(hr)Qv(hq) (q + q’)‘(s _ M$) @(hhhw hg) (5.3) 

Qv(hl) (QV($)) is the charge corresponding to the interaction of a lepton (quark) of helicity hl 

(hs) with the vector V. Furthermore s = (p+p’)‘, with p and p’ being the lepton momenta, and 

MG is the mass squared of the vector boson V. The universal functions ao(hr, hq, h,) coincide 

with those given in Table 1. Equation (5.2) was also obtained independently in reference [lo]. 

For e+e- scattering the effect of photon radiation (both from the initial and the final state) 

can be easily incorporated into equation (5.1) by using equation (4.5). Here I will display 

directly the result for the square of the amplitude with n gluons and m photons, to the leading 

order in N: 

2 IAe+‘-(h,hq,hg)la = eZmgZnNn+l 1 C A:(h,, h,, h,)l’ 
v=7,2 

tqQ I-El I({p:& + {qk}{&j} 1” {l,z,n) (ql)(12;. . . (7bqy(5.4) 

The k’s are the momenta of the photons. Once again this result is only exact if alI the gluons 

and the photons have the same helicity, but this is the behaviour of all the other helicity config- 

urations in the case of soft emission. The difference between equation (5.2) and equation (5.4) 

is the source of the string effect in e+e- collisions. 

6 Conclusions 

In this paper I analyzed the color structure of general QCD processes, with and without color- 

singlet sources. A general procedure to decompose any amplitude in terms of color-form-factors 

led to the identification of gauge-invariant sub-amplitudes in terms of which the amplitude can 

be written. This procedure applies to tree-level processes as well as to loop amplitudes. 

This prescription also enables to isolate the leading-N contribution to a given process and 

explicitly exhibits the coherence properties of the radiation of colored particles. I showed this in 

a few examples, where use of exact tree-level matrixelements was made. These results suggest 

that string-effect-type correlations can be found not just by looking at the soft radiation, but 

for hard radiation as well. 

Throughout the paper I only studied cases with massless external states. The decomposition 

in terms of color-form-factors is independent of this assumption and certainly goes through for 
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amplitudes with massive quarks or massive color-singlet vectors. In this case, alas, simple 

analytic expressions are not known for any class of amplitudes. On general grounds, though, 

the qualitative properties of color coherence are still present [21]. Further developments in this 

area wilI hopefully lead to the ability of tagging jets. 

Finally, it would be very important to be able to introduce into the explicit formulas given 

in this paper the effects of the virtual corrections. This is necessary to eliminate the divergen- 

cies associated with the soft emission and would aUow to make more quantitative predictions 

of the coherence effects, offering an alternative to Monte-Carlo simulations based on branching 

processes. 

It is a pleasure to thank S. Parke for many discussions and E. Eichten, K. Ellis, M. Mintchev 

and G. Paffuti for their comments and for drawing to my attention reference [12]. 
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Figure 1: The color factors for two quark pair scattering. 
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Figure 2: The color structures for the scattering of two quark pairs and two gluons. 


